If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-20x+35=0
a = 2; b = -20; c = +35;
Δ = b2-4ac
Δ = -202-4·2·35
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{30}}{2*2}=\frac{20-2\sqrt{30}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{30}}{2*2}=\frac{20+2\sqrt{30}}{4} $
| 5+30x=6 | | 8+2(x-1)=4x+2 | | A=9/4(h-4) | | 90=3x+51 | | 5+2x=2(-x+6)-15 | | x/4=4/36 | | A=9/4(h-64) | | 66x60=30(9x+15) | | 12x-20x=180 | | x/3+10=20* | | 9x+6=12+6(x-4) | | 67+5x+3=180 | | 5(x+3)=2+7(x+1) | | 44=4(k+10) | | 32n-1=19+32n | | 18x+108=180 | | 5n-21=14 | | x-7+x=43 | | t/4-1=4 | | 2x+21=-x/2+41 | | 10(s+3)=60 | | 4(3x-2.1)=6x-8.4 | | 18x+82=180 | | 93=5+8j | | (x+1)^2=x^2+2x+1 | | 4x=90-14 | | -3=-4+k=7 | | −x+7=−6x-13 | | x+3(x+2)=8+2(x+6) | | 3(y+4)=9y-6 | | a+5=-4=-3 | | 5t+3=9 |